
~\ JVJIL~fFILE U

. z 0LABORATORY ft IIb

SCRIPPS INSTITUTION OF OCEANOGRAPHY
'1868*

,ego, California 92152

0
00

PARABOLIC EQUATION MOD)EL

Jean-Marie Tran

% LN

MPL TECHNICAL MEMORANDUM 401

U'-Cr IN. V
MAPL-U-9/ 88 lopu %

Approved for public release; distribution unlimited.06'98

April 1O9 U
%

9 L -A-



4u- .0 -P ' -W1w

SECURITY CLASSIFICATION 31F ThiS PAC!

REPORT DOCUMItETAT1Old PAGE
Ia. REPORT SECURITY CIMSW4AO5#t * "44~dtM~CS

UNCASSfII___

2a. SECURITY CLASSIPICATION AUbOibfy I3 ~it*t. &4 k~i&. 77 M777io~

2b. OECLASSI0ICATION.' OO*4G*AO~tG SC010061. Apgw a'-l, rl~;dsrbt r

4. PERFORMING ORGAWdIAT) RAFORT NAJAL1tSI I bi"aqAai~ &u.sti1* I% It iociAllwMb

)WL Technical 14.1rardm 401 1VWL-U-9i 8$)

6a. NAME OF PERFORMING ORG46AtION11 G 061 iowoox %&* NJt3 i;~7*t F CA"%.410

Marine Physical Lakxratoj_~~ ofieo ^% t t

6C. ADDRESS (ity. Statev. and ZIP Cof) i h:Iiat kcvt $Iof 40"s 1*10( w
University of California, Smw OiaW O North O.rw) tvw
'Scripps Institution of Ocearxxqraphy Az 1 tA= 'A 2.~ --

San Diego, CA 92152
&a. NAME OF FUNDING JSPONSORING i9o 041<1 Sw*VgW% 9 ''t~t ~~~~V ca

ORGANIZATION o3w*~
Office of Naval Pasearch VW 14-is _ ___<_____________0__

k-. ADDRESS (City. State, and ZIP Co*e) , D W0 4004 iiNt. ' Aiit W*
Department of the Navy "04O&. #*CA 4
800 North Quincy Street 1j4I1%l %,0 V0 I ol% N lO
Arlington, VA 22217-5000 Ip

11. TITLE (Include Security Clawficationi

PARALIC EQWAIN ?WE

12. PERSONAL AUTHOR(S)
Jean-Marie Tran

13a. TYPE Of REPORT 13b TIME COVERED A = )a 1 198 584 q~~~4 I'~~ QSUimnary PROM _ ___To I Arl18
16. SUPPLEMENTARY NOTATION

17. COSATI CODES Is SUBJECT TERMS (Cofthmw n O' 4 fw~ptc .1111 40MY ov~w 6 b'c* nombofibJ,
FIELD GROUP SUB-GROUPpaaoi prpgto =dl mtcmelan

SACLANT PAM program
19. ABSTRACT 11115 report deals wish a pinmbok I~ 1I 6 1 1 8ws-to

Marline Thyskad Laboratory. This ~aOWI M (E) PMnw is a FOR7WAX~
version of lbs SACLANT PAREQ proptn (11. -

The parabolic I ethd YMM a mjo do'q~ 110 a km ofh 111111:16
(2]. Th1e advantage of the methodl a 8w am* ay rup depwAsm a hoinet D)4.
fiatiuoa efrects am includled. but n ,'uaua ftr backwaa" a
for (31. ThN parabolic apo equ1 u migk of ;~o Sj g 8w akirm

of computer speed considetatio"s Mwrin 4kHI P

where H is the water plus bocwm heigbl f the fequency. c dowiammd vimqy. t an
depth and R. the maxiuzm nge f4).

In the foilowang pages, te parabolic eqlunaon wte denved. iots wufd mne -
cal algorihm we preented, ft awliromenatw *a pgil wq am dearxbgL
Fialuly examnples arm giveni.

The goal of this report is to prevxdo pownuu te neceaay mformmunim to
understanid and use the PE program.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
0l UNCLASSIFIED/UNLIMITED 12 SAME AS RPT. 0 TIC USERS UNCIASSIFlIM

22a. NAME OF RESPONSIBLE INDIVIDUAL I22b TEL.EPHONE (Include Area Code) 2c OP CE SVV8Ot

W.S. Hodgkiss I(619) 534-1798 1 IP
DO FORM 1473, 84 MAR 83 APR edition may be used until exhlausted SECURITY CLASSIFICATIONw OF THIS PAGEp

All othef editions are obsolete UA 64.9~W" V.."01W 90-6 0



KW 7 V! 7. v." -N W-

PARABOLIC EQUATION MODEL

Jean-Marie Tran

Marine Physical Laboratory
Scripps Institution of Oceanography

San Diego, CA 92152

ABSTRACT

N' This report deals with a parabolic propagation model now implemented at the
Marine Physical Laboratory. This parabolic equation (PE) program is a FORTRAN 77
version of the SACLANT PAREQ program [1]. -

The parabolic methods were a major development in the field of acoustic modeling,
[2]. The advantage of the method is the simple way range dependence is handled. Dif-
fraction effects are included, but neither reverberation nor backscattering are accounted
for 3+. The parabolic equation requires small angles of propagation from the horizontal
and cannot handle steep sound velocity gradients or high frequency propation because

of computer speed considerations.' The running time is proportional to Hf 2I Rm

where H is the water plus boiutm height, f the frequency, c the sound velocity, z the
depth and R,,, the maximum range [4).

In the following pageshe parabolic equations are derived, the associated numeri-
cal algorithms are presented, the environment and the program inputs are described.
Finally examples are given.

The goal of this report is to provide the potential user the necessary information to
understand and use the PE program. * ""'-':
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1. Parabolic Approximation

The starting point of acoustic models is the homogeneous Helmholtz equa-

tion or reduced wave equation which is an elliptic partial differential equation:

V 2p+k2p -0 (1.1)

V2p+k 2n2p = o (1.2)

with k 2 =4kIn2 where k. is a reference wave number and n can be regarded as a

refraction index. In cylindrical coordinates, neglecting the azimuthal depen-

dence, the Helmholtz equation is:

0 2P 1+OP+k2p0 (1.3)
r2 r ar az2

Intrinsic cylindrical spreading is accounted for by a factor r"A in the pressure,

leading to the classic change of variable p = r(r ' z).

Then, the equation becomes :

a2,0 +-2O- ), k02n 2+ r!).= 0 (1.4)
ar 2  aZ2  4r

Essentially, the far field zone is of interest ; therefore, k. r >> 1 is assumed with an

index of refraction of the order of unity. The equation is simplified

a2,0+2,+k .2 n, 0 (1.5)
Or2 aZ2

or

0+ko2Q2)4,: (1.6)
Or

where the operator Q is

Q2 =n 2+ 1 2 (1.7)

Parabolic approximations are obtained by factorization of the differential

operator Q into the product of two commuting operators

,p.



3

0a2  2 _ = a--kQ i~.)08

(I[,)

ar2 +k r a

It requires that -2 and Q commute. This condition is considered sausfied if thear1

index of refraction slowly varies in range so that the gradient L is negligible.

The differential equation then can be separated into two equations:

( ~ 0 Q)00 (1.9)

(-i-r+kQ)O=O 

The general solution is the sum of their two solutions, the first one repMTents the

outgoing wave and the second one the incoming wave. The underlying nature of

the parabolic approximation is to consider that the solution propagates primanly

in the outward direction with very little reflection, backscattering and rverber.

tion.

4.
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2. Paabolk Equations

Thw differences in formulations of the parabolic approximations leading to

different parabolic equations reside in the way the Q operator is evaluated. The

pseudo differential operator Q is rewritten as

Q 1 0-l+ ,2l .)'A (2.1)
k dz 2

and linearized in different ways by assuming either (n2 -1)D or - 2 is small

compared to 10.

Taking 32- ti is equivalent to considering small gradients of the sound

velocity. Tappern [61 shows that the term - is related to the mean square
e~ az 2

angle of propagation with respect to the horizontal. If 4' = exp iko (rco0+±z sine), the

norm of _ -M- is sin2e where 0 is the angle of propagation with respect to the

horizontal. Therefore assuming it is small is equivalent to considering small pro-

pagation angles with respect to the horizontal.

Approximations of the Q operator lead to two classes of models, one of

iterative methods based on finite difference schemes, the other based on the Split

Step Algorithm [6,71 using Fast Fourier Transforms (FFTs). Only the last class

will be dscibed here in relation to MPL's PE program.

The standard small angle parabolic approximation is obtained by assuming

that both the index of refraction term and the propagation angle term are small

and by using a first order Taylor series [5,6].

I+ n -. + 1  (2.2)
2 2k- 2

3 111 1 . . o . , m ''" ° " "



The corresponding equation is obtained by the classic transformation 0 e' " 41

r "nZ~l 1 a21
i-2(eU"rT)+k. 1+I--i-2k (e PIP) =O0 (2.3) i

r +1 2 2k.io az
i- +k , n-j I'+_--- = 0 (2-4)

ar 2 2k aZ2

- +2ik. 2-Fr+k (n1) .O (2.5)

Equation (2.5) is the standard parabolic equation, also called Tappert and lardin

parabolic equation.

Thompson and Chapman [7] introduced an improved parabolic approxim-.

tion by using another development of Q proposed by Feit and Fleck 181.

1+L + 4n 2- -1 (2.6)

Q= T7'/ 2 +n-1 (27)

They showed that this approximation can stand much wider angles. While the

standard parabolic equation is valid to about ±20, this modified parabolic qua-

tion is valid up to ±400 [4]. Using an additional pseudo-operator identity

( -) +)' 1 2.8)

the equation becomes

C)21

r+02 -I 0=0(29

With the previous envelope transformation 0 = e "', one gets

_1+_ , +4,(n- 0'--0 (2.10)
(1+_L 1
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3. Numerical Implementation

These parabolic equations are extensively used because of their efficient

nutmerical iplementation based on FFTs. Jensen and Krol [2,9] elegantly derive

the Split Step algorithm for the Tappert and Hardin parabolic equation. They do

as Fourier transform and assume an almost constant index of refraction. By

uvere Founer Transform, they get

(4 1"': )] -0
'- -F -  F( (rz) (3.1)

where F is the one dimensional Fourier transform with respect to z, r, is a refer-

ence range, and j i% the Fourier variable.

The above algorithm was primarily derived by Tappert and Hardin [5,6]

using operator representations. The parabolic differential equation is

ar= iA '+iB IP (3.2)

with A(1 ) -(ni-l) and 8(z) = !. Note that at this point, attenuation can
2 2k, az 2

be introduced by inserting a complex term in A : A = -- (n'--+ia). The solution

is then assumed to be

'(,.+Arz)=exp i f A(rz)dr +i f BJW),. T(roz) (3.3)

by analogy with differential equations in the real space with constant coefficients

A. B. Assuming that A varies slowly with respect to r, on splits the operator

'Y(r,+&r.z)=exp(iArA)exp(iArB)'(re,z) . The term exp(iArB) '(r, ,z) is evaluated

via its Fourier transform

cxp (i ArB )'(r 0 ,z) =F-1 [e 2k.F[1J(ro ,z )JJ(3.4)
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One can easily derive the Split Step Algorithm for the modified parabolic

equation (Thomson and Chapman):

S2 (r

'P(r ,z)= e 2 F-I ex,~ 2 ] '(r0 z) (3.5)

k.2.

~IN

[[,b

1 ~ ~ *'' ~ ~ %%
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4. Interpretation of the Split Step Algorithm
Two physical phenomena are involved : the propagtion in a homogenoous

a

environment and the influence of changes in the medium on the pfopa tion

The Split Step Algorithm multiplies the angular pectrum by a phase hdit to

account for propagation over a range step .v The steepr the angle. the grmatr a%

the phase shift. Then it multiplies the inverse Founr taninsform 4 thi scA ringr

step spectrum by the index of refraction term ithich accounts fv h4dn gci i thr

medium.

Other algorithms for the standard ptbalc equation Arm satduc d 16.101

such as

It allows for a better coupling betwfen the two phyucal pheromna debcnt'cd

above. An error analysis (101 shos that the mtuJ alpnwthm 0l1 has se. wW
I

order accuracy in • while the Las one (4 1) has a thrd arder ac c uWy in,

The Split Step Algorithm is a mnnhing %Alutinm in range. theeforr range

dependence of the enviromental da (sound vercy profik-s. tIathym nryi

easily introduced. Boundary condions are impliit in the numeical "uticm A

pressure-release surface at the asi/watr Interface s aiturned . the field m' made

anti-symmetrical in depth about i = 0 by u.mng ral One tran~fwrns (101

The Fourier theory Assumes L Inlefrtlle functions, the field mutt %ani h

below the maximum depth of the transform. A pmretum releae Nxotn muo-

correspod to the maximum wansfc'wm s aple to avid albaung shie doing

FT

FF~s..

w .

% %%'.. -'_',.%,_" s_% _ % • " % %% "% • % s " % " ""% 
,"

' % " % ' " "- % s, • p.,
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S. Decription of MPL's PE Program

The algotthns used am the Split Step Algonthms (3.1) and (3.3) which

have a second order accuracy in ,. The tutl transform az is determined by the

input transform component N. the transorm his a tou of 2* points, N must be

smaller than 12. The maium depth of the trwsform Z,.. is the maximum depth

of the botom D... extended by a factor of 33 S to account for the unphyuac3l
aq

attenating layer.

h
C 0

D

Sia'UXMU C2 -

If the input transform size is not given, it is determined by the program using

N = I+ IogZ(k, ,2) (5.1)

where k is the average wave number, and Z..,, is the maximum depth transform.

The program begins by creating the starting field and, in a range loop, reads

the environmental data, creates the refraction index table, ei,"A, and the second

derivative table, ei'". If the range step is not fixed, the program computes a new

range step at each range Ar = 1 "  where X is the wavelength andl-COS 0

0=tan-'[ IsF()'I i~[koIF( P)I ,s is the Fourier variable, F is the Fourier transform and I I



a.

is the norm (i.e. IF ' FF* di).

If the new range step has a relatve diffeence with respect to the old range

step of at least 23% then this new range step is selected and a new table of second

derivatives e" is computed. Otherws. the old range step and the second

derivative table at kept. The pogram does Founer une transforms and multi-

plies the transfomed field by the table of second denvauves

- 2 2 k (n~d PE) (5.2)

cap -2 (Pwd*d PE) (5.3)

( I -
IT 3 

" I

The iverse sine Fourier tnsform is performed and the field is then multiplied

by

CpF i -- (4 -1 e - (s3dW PE) (5.5)
I 2

o is the attenuation in the water or in the bottom. The program advances the

range to r -

After bookkeeping on the range dependence of the environment is com-

pleted. it checks for aliasing in the transform. Aliasing occurs when the contribu-

tion of steep angles in the angular spectrum is significant. The parabolic approxi-

mation is based on the "small angle" hypothesis. The angular spectrum is

divided into four equal bins, their energy, E,, E2 , E1 , E, from low to high ',.

angles are computed. An aliasing factor is defined as 101og 0 R with ".

j E4 .If -14dB <R,, then the energy is spread throughout a large 0
Rz=Et+E2+E3+E4

! A.
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angular interval and aliasing is severe so the run is terminated. If

-20 dB <RI <- 14dB, then a warning is issued and after five warnings the run is

terminated. Two oversampling factors are defined, R 2 = E3 +E4 and R 3 =-. If

E1 +E2  E2

R2 < -70 dB and R 3 < -60 dB, the field is oversampled and the transform size is

reduced by a factor of 2.

%

9.

A.
"'
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6. Phase Error Corrections

The parabolic approximation and the Split Step Algorithm are applicable if

the index of refraction locally varies only slightly and if propagation is limited in

a narrow aperture about the outward range.

Comparison between the parabolic equation and elliptic equation normal

mode phase velocities in range independent waveguides [11,12] showed that the

parabolic approximation introduces phase errors.

In the case of a single normal mode describing the propagation,the phase

error is canceled if the reference wave number, k., is chosen to be the mode wave

number [11]. When several modes are propagating, there is no obvious a priori

choice for k. [13] even if it can be intuitively understood as a weighted sum of

the excited mode wave numbers [12]. In practice, the choice of k. is left to the

model user. Two different methods implemented on MPL's PE program try to

correct these phase errors.

The first method by Brock et al [14], also called the CMOD correction,

modifies the environment, i.e. the profile of the refraction index to minimize the

phase errors. The idea is to decompose the sound field calculated by the para-

bolic equation into propagating normal modes and to compare these modes with

those obtained by a WKB approximation to the elliptic wave equation. Requir-

ing that the depths of the modal turning points (where the mode amplitudes are

the largest) are the same in the parabolic and elliptic cases, that the phase veloci-

ties at the turning points are the same and assuming that there is no isovelocity

region, a mapping can be derived :

(n z (4n_71, z 4n-) (6.1)
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The CMOD correction appears to offer improvements when the source and

the receiver are near the surface, the bottom, or in regions near individual mode

turning points.

Pierce introduced a better approach to determine in a more natural way the

reference wave number by using the Rayleigh Principle : "if the propagation is

progressive such that the energy is being transported on the average in one diiec-

tion without propagation in the backward direction then the average kinetic

energy is equal to the average potential energy" [13].

The kinetic energy in the volume element, V 2 is l( I u1I+ i 2) V0 where

u, v are the particle velocities in the r, z directions respectively. The potential

energy is -f P dV where P is the pressure and dV is the change of volume of the

volume element with varying pressure. If the volume element dimensions are

small compared to the wavelength, the plane wave approximation can be used

and V =V (1- -L) and therefore, dV,- 2 Then, the potential energy
PC 

PC

becomes -2 [15].
2pc2

Using a volume element integrated over z, the Rayleigh Principle becomes

p( U12+ Iv12)dz =2-L--L-z (6.2)

This principle can be applied in underwater acoustics where the field is a

superposition of modes [13]. The equation becomes

J(I-.)2r1 1.&12 dz -Jp' 10, 12 dz
k0

2 I lb J 1 d (6.3)

since

1 p rkO2 112 (6.4)
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I.D 12
IV12= (6.5)WP r

IpI2= 1 (6.6)
r

0, (6.7)

This wave number is range dependent and can be proved to be range

independent in range independent media. The method also allows discontinuities

of density. The natural choice for k. as given by Pierce consistently yielded more

accurate results than when other schemes were used [13] . According to [11], it is

strongly recommended, to ensure maximum accuracy of the PE calculations, to

use this phase velocity correction together with the modified parabolic equation

(Thomson and Chapman). MPL's PE program computes k. every ten range steps.

p.,~.p..
S

.S
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7. Source Field

Initial fields must be computed to start the marching solution in range. The

wave equation to solve is

2!P- + I 2 + 2-2E = -__()~z-. (7.1)
ar 2 rar aZ2  r

where p. is the pressure at one meter [6]. p0 is set to unity.

The starting field can be either created by source routines available in the

program or entered as an input in a file. The three available sources are the

Gaussian source [6], the Greene source [16] and the Thomson source [7].

The Gaussian source is an asymptotic approximation to spherical spreading

in the far field. The standard parabolic equation is simplified in the near field by

neglecting the refraction term;

2awo -F +--- = 0 (7.2)

with p=re"e"rP. Near the point source at depth z,, the field is spherically spread-

ing p - with R = 1r
2 +(z-z,)2 . To do an asymptotic matching between the two

expression for p, one lets r --* in the spherical spreading solution and, after a

first order expansion :

- e I Z (7.3)Lr r2

Taking the solution of the simplified parabolic equation, one lets r ---0, and by

asymptotic connection one gets

,pk.(z-zZ?

F(7z)=+e 2 (7.4)

This solution given by Tappert is simple and avoids spurious sidelobes [5,6].

This source has been modified to allow some tilt with respect to the horizontal.

The half width 91 of the source (half angle corresponding to a 3 dB loss with
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respect with the center of the source) can be selected too. Taking 0 = 0

corresponds to the original source or the standard Gaussian source, that is to a

half width of 35° .

The Greene source is documented in [16]. It has been designed for a higher

angle parabolic equation (HAPE). It is a wide angle source with a -3 dB half

width of 800.

The Thomson source is an alternate starting field that uses a Kaiser Bessel

window to design a source that insonifies a limited aperture in the k, space. The

parameters describing this source are the depth of the source :,, the half 'idth of

the source aperture 01, the tilt of the source 02 and a the level in dB between the

stopband and the passband in the k, space. The field is

-FZ) = I sin[2x- (z-z,)tanO(1" )(x) .  (7.5)
with x = 0.1102 (a-21) and a> 50. The Thomson source as implemented in PE uses

a=60 so x = 4.2978. Io is the modified Bessel function of 0' order.

=(1-[ z- ]2)' where Z. is the maximum transform depth and c. is the

reference sound speed.

The PE program can also be started by a source field stored in a file. The

file must have 2N pairs of the real and imaginary parts of the pressure. Each pair

corresponds to the pressure field at a point of the mesh which has a depth incre-

Zrrjz

ment equal to 2 ,where Zmx is the maximum depth of the transform. This

field should be normalized such that the field corresponds to a unit pressure

source at one meter, and be a solution of (7.1). The Gaussian source and the U

Thomson source have been properly normalized.
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8. Description and Treatment of the Environment

The treatment of the environment is described in the documentation of the

SACLANT PE program [1]. The bottom is a two layer fluid bottom: a sediment

layer characterized by a height, an arbitrary sound velocity profile, a density, and

a compressional wave attenuation, and a subbottom layer characterized by a

sound velocity, a density and a compressional wave attenuation. .

SEDDIM

The change of density between the various layers (water, sediments, subbot-

tom) is taken care of by the method given by Tappert [6]. The correct wave equa-

tion is

pV(-Vp)+-2-p =:0 (8.1)

where p is the density. By doing the change of variable q the equation
4P4

becomes

V 2q+kn 2 q =0 (8.2)

where k. = - and n is an effective index of refraction:
C,

,2= F--+ rpVp 2 Vp) (8.3)
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The discontinuities of the density are not allowed and the program smears out its

jumps. If the density jumps from pi to P2, the smoothed density is

(PI+P2) (P2-PI) z-h
P(z)= 2 2 anL-L) (8.4)

and L is taken such that L = 2

The subbottom has a height twice the wavelength. If the phase velocity of

the subbottom is set to zero, this height is also zero and there is no subbottom.

Bottom loss is introduced by adding a small imaginary part to the wave

number [2], k = kR+i a with a<<kR where kf = -*-. This attenuation is expressed as
C

part of the refraction index n2=(.S-)2+i (C0-)2- , assuming that a<< ." The ima-

C C CO) C

ginary part of the refraction index is then expressed in term of the real part

n,2= -a. The actual input for the attenuation is 03 in dBA where X is the(0

wavelength. Then a = 1 ) and ni 2 ,R2n.

2xc (201oge) 27.287527

Volume attenuation in the water is introduced by multiplication of the field

by a term e"' [1] but this term is fairly low at the frequencies of interest for PE,

that is below 200 Hz.

Since the environment can vary in range, one must provide the program

with sets of the environmental data at specified ranges. A sector is defined by

these 'ges associated with environmental data. In each sector, the sound velo-

city pofile is range independent while the bathymetry is linearly interpolated in b
range between the two ends of the sector (water depth, sediment depth, subbot-

tom depth). The sound velocity profile is interpolated linearly with depth. How-
N

ever the sound velocity profile will jump from one sector to another because it is

not interpolated in range.

1 1 1 1 1 1 1 1 1 1 1 1' 1 1 1 1 1 1 1 1 1 1 1-11 1 1 I
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9. Program Inputs

The program has a readable input file. Data can be divided into two groups.

One has the general information such that frequency, source depth, filenames for

output results. The other contains environmental information that must be

repeated for each sector. A list of the inputs follows. All of the following infor-

mation must be included or lines left blank.

Al. Title of the input file or run

A2. five output filenames of seven characters each where the output will be

dumped (sector information file, transmission loss versus range at selected

receiver depths, transmission loss versus depth at selected ranges, SIO data file

for subsequent use for contour plot and SIO outfilename for the pressure field). If

blank, no file is generated.

A3. Transform size (integer smaller or equal to 12), 0 meaning that the pro-

gram itself will compute the transform size based on a sufficient sampling for

the Gaussian source.

A4. Reference sound speed (allowing the calculation of ko). A negative

sound speed means that the Pierce phase correction will be used. A nul sound

velocity means that the CMOD correction will be used. Otherwise the given

sound velocity will be used as reference sound velocity in the calculation of the

index of refraction, and its value must have a physical value (e.g. 1500 mIs).

A5. Output range step size (in m ). It must be greater than the range step.

A6. Frequency (in Hz) since at high frequency the range step is small, the

frequency should be taken below 200 Hz.

A7. Source depth (in m)

% A-C
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A8. Maximum range of track (in kin)

A9. Parabolic equation flag ; 0 means that the standard parabolic equation

will be used, 1 means that the modified parabolic equation will be used.

A10. Spreading flag ; 0 means that the source is a point source in a 3-D

geometry while 1 means that the source is a line source in a 2-D geometry (i.e. a

horizontal line source perpendicular to the range-depth plane). 1-

Al1. Source flag ; 0 means that the starter will be the Gaussian source. I the

starting field is provided by the user in a file, 2 the starter is the Greene source

and 3 the starter is the Thomson source.

A12. Half beam width and Beam tilt (up is positive) with respect to the hor-

izontal (in degrees) for source flag equal to 0. 2. 3.

A13. Filename containing the starting field when it is provided as input

(source flag equal 1).

A14. Number of receiver depths and number of selected ranges (each one

s 20) where transmission loss is desired.

A15. Number of ranges and number of depths for the contour plot (max-

imum dimension of 100 for each).

A16. List of the receiver depth army (m) in increasing order

A17. List of the selected ranges (m) in increasing order

A 18. Number of sectors (the environmental data must be repeated for each

sector) t
B 1. Water depth (in m) and starting range of the sector (in km)

B2. Number of points in the water sound velocity profile

p%



'1

B3. Lin of pairs depth. sound velocity (in m and m/s)
B4. Seiet height in m and density (in g io 1)

83. Attenuauon in the sediments ( in do )

B6. Number of points in the sediment sound velocity profile

B7. List of the couples height. sound velocity (in m and mis)

B8. Subbootn density (in g'cm '). atenuaton (in d4 A)

B9. Subbonom sound velocity (in mos )

When two arguments are on the same line, be sure to have at least one

space (not a comma) in between. The couples height/sound velocity must be

such that the first sound velocity value corresponds to a zero height and the last

one to the maximum height Also note that heights are used and not depths for

the sediment layer.

'.q

I
-- ~ .'.- ~ i ,& .p~ ~ ~ , *P' ,S ~ s z'v.v ,~ 's' ~'~ "~' s' ,p



- - , 4 t W I _J_

23 I

10. Program Output

The user is allowed in the input file to ask for five different outputs:

- a sector information file that summarizes all environmental information

- a transmission loss versus range file that contains the transmission loss

versus range for each receiver depth over the entire range of track. A multi-

channel SIO data file is automatically created for subsequent processing and

plotting. The name of this SIO data file is the inputed filename with the "sio"

extension. The first channel of the file contains the ranges and the following ones

(up to 20) correspond to a receiver depth and contain the transmission loss.

- a transmission loss versus depth that contains the transmission loss versus

depth for each selected range, over the maximum physical depth. A multi- ,

channel SIO data file is automatically created for subsequent processing and

plotting. The name of this SIO file is the inputed filename with a "sio" extension.

The file is structured in pair of channels where the 2p-11- and the 2p"k channel A..,.

correspond to the depth and the transmission loss of the p I selected range.

- a SIO data file to feed a contour routine. This file has a number of chan- A'P

nels equal to the number of depth samples (A 15). Each channel has a number of

points equal to the number of ranges samples (A15). The file is an equi-spaced

grid in range and depth of transmission loss values.

- a SIO data file containing the pressure field where the first channel con-

tains the real part of the pressure and the second one the imaginary part of the

pressure. This output requires a fixed range step and a fixed transform size N.

Each channel is made of sequential 2N point segments Each segment .a

corresponds to a range sample. ,
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11. Examples

11.1. Isovelocity Shallow Water (Range Independent)

The first example is a shallow water run taken from [1]. The medium is

range independent with isovelocity water and bottom, but without subbottom.

The source used is the standard Gaussian source (half bandwidth of 350) at a

depth of 25 m. The frequency is 50Hz. The standard parabolic equation is used

with a reference sound speed equal to 1500 m/s. No phase velocity correction is S

applied. A copy of the script, the input file and the plot control files are

presented below. In this example two modes are propagating, one with a

stronger attenuation than the other. We find the same transmission loss versus

range plot as in [1]. This run takes 15 minutes on a Sun Worksation 3/50 (Sun

Workstation is a registered trademark of Sun Microsystems, Inc).

V
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11.2. Wedge-Shaped Ocean with Penetrable Bottom

The second example tries to repeat the results by Jensen and Kuperman

[17]. The environment consists of an initial 5 km stretch of 200 m depth fol-

lowed by a bottom slope of 1.550. The source used is the standard Gaussian

source (the half width is not given in [17]), at 112 m depth, the frequency is 25 Hz.

The maximum water depth is 200 m with a sediment layer extending to a depth of

800m.
0

The program is such that the contour plot extends in range from the source

to the maximum range, and in depth from the surface to the maximum depth.

The maximum depth is the maximum sum of the water depth, sediment/bottom

and subbottom heights.

The transmission loss versus depth extends in depth from the surface to the

maximum depth like in the contour plot, and all mesh points are used. The

transmission loss versus depth is interpolated in range when the selected range is

not a range mesh point.

The contour plot is presented below. One finds good agreement with [17]

although the contour routines are different. A copy of the input file as well as the

script ind plot control files and the sector information output file are following.

This job takes 50 minutes to run on a Sun Workstation 3/50 (Sun Workstation is a 6

registered trademark of Sun Microsystems, Inc).
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11.3. Deep Water Example I (Range Independent)

This example is of deep water propagation over a range of 60 km ,the water

depth is 2000 m, the frequency is I00 Hz and the source is a 20 narrow and 80 tilted

Gaussian source at 250 m depth [1]. One finds once again agreement between the

MPL's PE program and [1]. Script, input, plot control files and plots follow.

This run takes 30 minutes on a Sun Workstation 3/50 (Sun Workstation is a

registered trademark of Sun Microsystems, Inc).
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11.4. Deep Water Example I (Range Independent)

This last example is of deep water propagation at 100 Hz in a range indepen-

dent medium [1]. The source, 250 meter deep is a Gaussian source with a 20

width and a 80 tilt. The maximum water depth is 2000 m with a 100 m sediment

layer and a subbottom. The script produces a plot of transmission loss versus

range, a plot of transmission loss versus depth and a partial contour plot. One can

see agreement with [1]. Script, input, plot control files and plots follow. This run

takes 30 minutes on a Sun Worstation 3/50 (Sun Workstation is a registered

trademark of Sun Microsystems, Inc).
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